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INTEGRATION OF POLYHARMONIC FUNCTIONS 

DIMITAR K. DIMITROV 

ABSTRACT. The results in this paper are motivated by two analogies. First, 
m-harmonic functions in Rn are extensions of the univariate algebraic polyno- 
mials of odd degree 2mr- 1. Second, Gauss' and Pizzetti's mean value formulae 
are natural multivariate analogues of the rectangular and Taylor's quadrature 
formulae, respectively. This point of view suggests that some theorems con- 
cerning quadrature rules could be generalized to results about integration of 
polyharmonic functions. This is done for the Tchakaloff-Obrechkoff quadra- 
ture formula and for the Gaussian quadrature with two nodes. 

1. INTRODUCTION AND STATEMENT OF RESULTS 

Let Rn be the real n-dimensional Euclidean space. The points of Rn are denoted 
by x = (x1, x2,... ,xn) and IxI denotes the nonnegative value of (Z nI x2) 1/2. For 
any positive r the open ball B(r) and the hypersphere S(r) with center 0 and radius 
r in Rn are defined by 

B(r) = {x jxj < r} 

and 

S(r) = {x I = rl 

respectively. The closed ball B(r) is B(r) = B(r) U S(r). If r = 1, then sometimes 
the argument in the notations for the unit open and closed balls and hypersphere 
will be omitted. The inner normal derivative on S is denoted by ,9. We denote by 
dx Lebesgue measure in Rn and by du the (n - 1)-dimensional surface measure on 
S(r). Note that the area of the unit sphere S in Rn is oJn = 2irn/2//r(n/2), where 
r is the Gamma function. 

The iterates Am of the Laplace operator in Rn are defined recursively by 

m = A/m-1 
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The identity operator is A0. The function u is called polyharmonic of order m, or 
m-harmonic, in B if u belongs to the space 

Hm(B) ={u C C2m-l(B) n C2m(B) Amu= O on B} 

In particular, if m = 1 or m = 2, u is said to be harmonic or biharmonic, respec- 
tively. For any p > 1 we denote by Lp(B) the Lp space on B equipped with the 
norm 

Pi lip ( If (x) Pdx , <p<00, 

lIfi l = supvrai f(x)l. 
xEB 

The Sobolev space is defined by 

Hpm(B) := {u E C2rnl(B): Amu exists a.e. in B and Amu E Lp(B)}. 

As null spaces of the even-order differential operator Am the polyharmonic func- 
tions of order m not surprisingly inherit most of the remarkable properties of the 
univariate algebraic polynomials of odd degree 2m - 1. Thus, polyharmonic func- 
tions are appropriate for the approximation of multivariate functions. We refer to 
the volume [5] for some recent results. The main purpose of this paper is to extend 
two well-known quadrature formulae, which are precise for all algebraic polynomi- 
als of degree 2m - 1, to the corresponding multivariate analogues, which are exact 
for the m-harmonic functions. First we introduce a notion similar to the alge- 
braic degree of precision. Every linear functional Q(f) approximating the integral 
1(f) = fB f(x) dx in terms of values of Aif, i = 0,... , at certain points and/or 
surface integrals of them and their normal derivatives is called an extended cubature 
formula or extended cubature rule. The relation between the functionals I and Q 
is described as I(F) Q(f). An extended formula is said to have polyharmonic 
order of precision m, PHOP(Q) = m if I(F) = Q(f ) for all f c Hm(B) and there 
exists a function f such that Amf # 0 in B and I(F) 78 Q(f). 

These definitions are justified by the analogy between some well-known theorems 
concerning integration of polyharmonic functions and results about quadrature for- 
mulae. For example the Gaussian mean value property 

J u(x) dx = [7w/22/r(n/2 + 1)] u(O) 

of harmonic functions is a multivariate analogue of the rectangular quadrature 
formula 

/ f(x) dx 2 f(0), 

which is precise for linear functions. More generally, Pizzetti's mean value formula 

J u(x) dx = r 
22i!(n/2 + j + I) A3u(O), 

which holds for all m-harmonic functions u, extends the quadrature formula 

1 nz~~~-1 2 
f(x) dx E r-(2j) (0) 

S= (2j +1)!f(io) 
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which is precise for all the algebraic polynomials of degree 2m - 1. An immediate 
consequence of the first Green formula is the equality 

(1) J u(x) dx = 1/n u(x) du 

for harmonic functions. This is an analogue of the trapezoid quadrature rule 
'1 

f(x) dx f(-1) + f(1), 

which is precise for polynomials of first degree. This analogy suggests that we 
consider each hypersphere in Rn as an extension of a pair of nodes in R. 

The natural question arises if it is possible to extend (1) in order to increase the 
polyharmonic order of precision. The first possibility is to try to express the integral 
over B in terms of linear combination of integrals of u and differential operators of 
u over S. The second way of extending (1) is to approximate 1(u) by a multiple 
of the integral of u over a sphere which is concentric to S. The main results of 
this paper are explicit representations and sharp error bounds for such extensions. 
Note that if an extended cubature formula Q has PHOP(Q) = m, then it is precise 
for every n-variate algebraic polynomial of total degree 2m - 1. Thus, our results 
allow the problem of constructing ordinary cubature formulae (linear combinations 
of values of the integrand and differential operators applied to it at certain points) 
of highest possible total algebraic degree of precision to be reduced to constructing 
ordinary cubature formulae for integrals on spheres. Furthermore, these integrals 
are given explicitly. 

The first quadrature formula we will extend is the "Tchakaloff-Obrechkoff quad- 
rature formula" 

rm-1 

f (x) dx E c; (f(i)(-1) + (I)if(i) (1)) 
-1 ~~j=O 

where 

Ci = Ci(n) = 2j+1 m!(2m- - 
-1)! = c3(m) - (2m)! (j ? 1)! (m - j- 

It is precise for every algebraic polynomial of degree 2m - 1, and the error term is 

(21)m J (1- x2)m f(2m)(x) dx. 

Pochhammer's symbol (a)k is defined by (a)k := a(a + 1) ... (a + k - 1), k > 
0, (a)o :=1. We shall prove 

Theorem 1. For every m E N the extended cubature formula 

[(m-1) /2] 

(x) dx S C(e) AJudu 

(2) [+(/2] -1 

? 5: C -]A3uda 
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where 

(3) C -Ce (i n)= (-i)j r(n/2)r(n/2 + m - i) (i +1- ) 
i C ' 22j+1 F(n/2 + m)F(n/2 + j + 1) j! 

and 

(4) C()-C?) (i, n) = (-)j+1 r(n/2)r(n/2 + m - j - 1) (j + 1 -m)j+ 
i i ) 22i+2 r(n/2 + m)r(n/2 + j + 1) (j + 1)! 

has polyharmonic order of precision m. Moreover, if u E C2m(B), then 

Rm(u) := I(u) - Qm(U) = l P(X) A-u(x) dx, 

where (pm is a radial function defined by 

WPm(x) =-W(r) - I22m (mi(n/2)m)1 (1 -r 2)m. 

For any u E Hpm (B), p ? 1, we have 

IRm.(u)I < ISjmjjqjAmUjjp, 

where 1/p + 1/q = 1. 

Note that if m = 1, then the second sum in (2) disappears and Qi coincides with 
(1). It is worth mentioning also that, applying (3) and (4) formally for n = 1, we 
obtain the weights cj (m), namely, 

Ce) (m, 1) = C2j (m), C(?)(m, 1) = C2j+1 (m) 

This holds because C~e) and C(?) are the weights associated with surface integrals 
of even-order 2j and odd-order 2j + 1 differential operators, respectively. Similarly, 
setting n = 1 in the formula for Wm, we obtain the univariate error function. 

It is well known that there exists a unique quadrature rule of the form f11 f (x) dx 
cif(Xi) + c2f(x2), which is precise for all polynomials of degree three. This rule 

iSf 
' 

f (x) dx f (-1/V) + f (1/V'), the Gaussian quadrature formula with 
two nodes. We prove 

Theorem 2. There is no extended cubature formula of the form 

(5) l u(x) dx = cj u do 
B S~~~~(R) 

with PHOP > 2. There exist a unique radius R > 0 and a weight c E R such 
that the extended cubature formula (5) has polyharmonic order of precision two. 
Moreover, 

n 1/2 
R= R(n) = + 2 

and 

=n + 2 (n+n)/2 
C =C(n)=n2 
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In what follows, this extended cubature rule will be referred to as QG, 

QGMU c(n) | u du. 
S(R(n) ) 

Let us note that c(1) = 1 and R(1) = 1/XV. In view of the proposed analogy 
between hyperspheres and pairs of nodes, this yields the univariate Gaussian quad- 
rature formula with two nodes. 

Corollary 1. For any positive integer n the radial polynomial 

P2(X) = fx12 - R2(n) 

is orthogonal on B to every harmonic function. 

This polynomial is the extension of the Legendre polynomial of second degree. 
Let BH 2 be the unit ball in H 2 

BH2 {u 2: IA2up < 1}. 

Denote by RG (U) the error of QG (U), 

RG(U) := I(U) - QG(U). 

Then 

Rp,G := sup {|RG(U)I: u c BHp2} 

is the maximal error of QG in BHp2. The next theorem concerns Rp,G. In order to 
formulate it, we define, for each n > 2, a radial function M(x) = M(Ixl) = M(r). 
For n = 2 we set 

M(r) 64r4-4(1-ln2)r2_(1-2ln2)_, O<r< 1/, 
() 614 r+4 2-5-41nr(1+2 vlr2}, X r < 1. 

For n = 4, 

1 4 1 r2 -+- 1-ln(2/3), O<r< /3 M(r)= - 92r - T2r '643- 2k/' Or 
1 {r4 -6r2+3+2r-2+12lnr}, 2/3<r?1. 

For all n > 2, n 54 4, we define M in the following way: 

4 _ ) .r r2 I 1_ (n+2 n/20 + 
r 8n(n+2) ? 2n(2-r) - n+2 ( n )J 2) + 8(2-n)(4-n) 

M(r)= 2 4(n2)2(4-n) n rR(n), 

8n(n+2) + 4n(2-n) ? 8(2-n)(4-n) 2n(2-n)-4-n)r 

2 n(2-nl)(2+F)r2n) R(n) < r < 1. 

Theorem 3. Let n > 2,1 < p < ox, and RP,G and M be defined as above. Then 

(6) Rp,G(U)= IIM(X)=1q 

where i/p + 1/q = 1. 
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2. POLYHARMONIC MONOSPLINES 

The principal tool in the proofs is an extension of the notion of univariate monos- 
plines introduced by Schoenberg [4]. Monosplines are Peano kernels associated with 
the functional of the error of quadrature formulae. Every monospline M of degree 
N is a piecewise polynomial of degree N with leading coefficient (-1)N /N! so that 
M(N) (_I)N on every interval of the partition a = xo < x1 < *.* < Xk < Xk+1 = 

b, M(N) = 0 for x f [a, b]. The knots xi coincide with the nodes of the associated 
quadrature formula 

b k+1 N-1 

(7) X fxdx ;zz E aij f(j) (X.). 
i=O j=O 

Moreover, the one-to-one correspondence between monosplines M of degree N and 
quadrature formulae (7) which are precise for all algebraic polynomials of degree 
N-i, is described by the following relation for the weights ai and the jumps of 
the derivatives of M at xi: 

a. = (-I)N (j M(N-j-1) (x,) - M(N-j-1)(x,+)) 

Here as usual we denote g(x-) lim {g(t): t - x, t < x} and g(x+) 
lim {g(t) :t - x, t> x}. The formula for aij can be obtained directly by using 
Peano's theorem, or alternatively, by N-fold integration by parts of the product 
M(x)f(N)(x) on the intervals [xi,x +1], i = 0,... , k, and summing the results. We 
refer to [2, Chapter 7] for a detailed proof using the second approach. 

Let Q be a bounded domain in R', and 6 = {Q1,... , Qk} be a partition of Q 
which consists of subdomains Qi, i = 1,... , k, such that 

k 

Q= z~ Qi nQs 0 for i 54S. 
i~ 1 

We consider the union of the boundaries 06 = Uk=1 0Qi as an analogue of the nodes 
x2 of (7). Let us denote by 06is the common boundary of Qi and Qs if it exists; 
otherwise 06is is empty. Then obviously 

06= ~ 06-S) U 0Q. 
(i,s= 1 

By a Lipschitzian graph manifold we mean a topological submanifold in R' such 
that for each of its points y there exists a neighborhood U of y on the manifold 
and an (n - 1)-dimensional plane -y in Rn such that the orthogonal projection JL, 
of U on -y is a bi-Lipschitzian homeomorphism, that is, there exists a constant 
K, 0 < K < 1, such that for any two points Y1, Y2 E U the inequalities 

K<lri-Yl 
- rY21 

- Y1 -Y21 

hold. On each Lipschitzian submanifold of Rn there exists an intrinsic measure a, 
which is defined by 

u(E) = f D(y) dY 
J D(y) 
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for any E C U. Here, U,-y,1 , are defined as above, D(1171 (y))/D(y) is the 
Jacobian of the Lipschitzian mapping fI)l1 at y, and day is the Lebesgue measure 
on the hyperplane -y. 

Let Q and 6 be such that all the boundaries &Qj are Lipschitzian graph manifolds. 
We fix the orientation on &Qj consistent with the orientation of R'. Then at almost 
every point x of OQj there exists a uniquely determined tangent hyperplane Yx and 
an inner normal vector vi = vi (x) which is orthogonal to ayx. We refer to [1, 
pp. 8-9] for more details about Lipschitzian graph manifolds. In what follows, 
Q and 6 are supposed to be such that all the boundaries which make up 06 are 
bounded orientable piecewise smooth Lipschitzian graph manifolds of dimension 
n- 1. Such partitions will be called regular. For any nonempty 06i, the inner 
normal derivatives on 06i, with respect to vi and vs are denoted by ,9 and ,9 
respectively. Similarly, the limits of A3u(x) when x approaches 06is from Qj and 
Qs are denoted by Aq u and A/u, respectively. The function M(x) is said to be an 
m-harmonic monospline on 6 if M E C2m(Q,), i = 1, ... , k, and 

AmM(x) _ 1 on every Qj, i = 1,... ,k. 

Lemma 1 (The first Green formula for Atm [1, p.10]). Let Q be a region in Rh 
whose boundary OQ is an orientable piecewise smooth Lipschitzian graph manifold 
of dimension n - 1. Then the equality 

~~if~3 ( 'A2- 3 jv- Arn-1V 2Ai u)d 
(8) E= X Q j0a--v zmjl ~v 

+ j(uArmv- vAmu)dx = 0 

holds for any u, v C C2n-l(Q) for which the integral over Q exists. 

Theorem 4. Let 6 be a regular partition of the bounded domain Q. If M is an 
m-harmonic monospline on 6 such that 

A 1m-J- M(x) - Am-j-M() = ai8(x), x E O6i, 

(9) _-1 Ar-niM(x) 
- 

A90i~m1-M(x) -= is(x), 
x 

ECws 

and 

Ar-J-lM(x) - a3O(x), x E AD, 
(10) - 0 A\m-i-1M(X) - &() (X) , X E 0D, 

then the formula 

(11) 

k j1 {mj-1M m-3 

iu (x)d iZ{ZiAm a8 (A) a> u(x)dW ? E j = sa(X)&U()dJ} 

n-i a rn-i 

? Zj ax(x) v Au(x)d? E du j(x)aJu(x)d u 

i's=: Q ju =:Q u) 
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is precise for every m-harmonic function on Q. Moreover, 

(12) j u(x) dx = Q(u) + j M(x) A/mu(x)dx. 

Conversely, if the formula (11) is precise for every m-harmonic function on Q, 
then it defines a unique m-harmonic monospline on Q which satisfies (9) and (10). 

Since the proof is similar to that for the duality of univariate monosplines and 
quadrature formulae, we omit it. The most interesting case is when the domain Q 
admits a partition 6 for which there exists an m-harmonic monospline M whose 
jumps a da, a, and a- are constants. Such partitions will be called super-regular. 

Corollary 2. Let 6 be a super-regular partition of Q. Then the extended cubature 
formula 

k _ -1 r- 
ju(x)dx S {-a' j uda + E? LOudu 

i,s=1 j=O j 
?Sa 3j -A-'uda? S~Aiudu 

is precise for every m-harmonic function on Q if and only if the associated mono- 
spline M satisfies (9) and (10) with ais(x) = a dIas (x) = aj, ai(x) = ai and 
ao(X) = aO 

Obviously, every ball in Rh admits a super-regular partition which is induced by 
concentric hyperspheres, and the corresponding monosplines are radial functions. 

3. PROOFS OF THE THEOREMS 

A multi-index is an n-tuple q = (ql,... , qn) of nonnegative integers. The follow- 
ing standard notations shall be used: 

n 

Iql= Eqi, 
i=1 

q! = qI! ..qn!, 

D = jqj JqJ 

We shall need the following formulae [1, Chapter 1]: 

(13) Akrs = s(s-2) (s-2k + 2)(s-2 + n)(s-4 + n) (s-2k + n)rs-2k, 

(14) A(rs logr) = s(s + n- 2)rs-2 logr + (2s + n- 2)rs-2 

and 

A22(uv) = uA2v + vA2u + 2AuAv 

? 4 E {(Dq Au)(DqV) + (Dq Av)(Dqu)} 
(15) JqJ=I 

? 8 5 Ej(Dqu)(Dqv). 
JqJ=2 

q! 
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Proof of Theorem 1. Apply (8) for v = =: p. The result is 

rn-i a 
lB Zmr (x)u(x) dx - - I j A VuAm jpdc 

J 9 - j~~o Js av 
rn-I 

+ E j-A3UAm-3-1 Wda 
j=o s 9V 

+ J W(x)Amu(x) dx. 

If u E Hm(B), then the last integral on the right-hand side vanishes. Taking into 
account the facts that ( is a radial function and -2 is the inner normal derivative, 
we conclude that for any u E Hm(B) the equality 

m-1 d 

lBAmp(x)u(x) dx Z drAM-i- W(r)Ir=iJ Aiuda 
B ~~~~ ~~j=O dr s Z 

m 1 

+ 1: A -j- W(~~l- 00 r V A-ludo 
j==O 

holds. The first statement in the theorem will be established once we have proved 
that 

(16) Am(1-r 2)m -(-1)m 2mm!(n/2)m on B, 

(17) Ak(1 - )mlr=l = (-1)k22k n! m (n/2)k (-k)rnk 
(m - k)! (n/2)(-(k 

(18) d Ak(l _ r2)mfr., (_ 1)k+12 2k+1 (M Irn (n/2)k+l1-~-- (18) dr (-r ) [ = (- )(m - k - 1)! k~l (n/2)mrk 

Indeed, it follows from (16) that AmW(x) _1 on B. Applying (17) and (18) for 
k =m - j - 1, we obtain the equality 

ux mx 1r- j iP(n/2)Fr(n/2 + m- j) (j+ 1-m)j f ud 
lB dx ) 22i+F r(n/2+m)1r(n/2+ j+1) j! J 

m 1 (-i)j+l F(n/2)r(n/2 + m - j - 1) (j + 1 - m)j+l + E 22j+2 r(n/2 + m)F(n/2 + j + 1) (j + 1)! 
j==O 

*j-&AjudaT 
Ovsv 

which holds for every u E Hm (B). It remains to observe that (j + 1 - m)j 7 0 
if and only if 2j < m - 1, which is equivalent to j < [(m - 1)/2], and similarly, 

(j + 1 - m)?+l =4 0 if and only if j ? [m/2] - 1. 
Now we shall prove (16), (17) and (18). Since 

(1- r2)m = Z(_1)i ( ) r2i, 
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we obtain by the linearity of Ak and (13) 

k~~i -,r2)m 

m 

Ak~l-r2)m - (_l~i ( m ) ... (2i -2k + 2)(2i -2 + n) 
i=O 

*.. (2i-2k + n) r2i-2k 

2 22k Z(l)i ! (i1 + n/2)(i-2 + n/2) 
i _k 

(m- )(i k)! 

* (i-k + n/2) r2i-2k 

= (-l)k22k m! _ (__l)i-k (m_-)! (n/2 + i_-_k) 
(n-k)! Z()1)! (rn - k) i=k 

* * (n/2 + i -1) r2i-2k 

! m-k 
(lk22k ra (1y - k2, (rn-k! v2 (m k 

(/2?+)k 

In the last equality we used the change of variables i = k + v in the sum and the 
definition of Pochhammer's symbol. On applying the identity 

(a)k(a + k)v 
(a+ v)k- (a) I 

we obtain 
(19) 

k 2)m k22k m.! m-k (1- k)! (n/2 + k)v r2V 
(Mr-k)! ) (m -k - v)!(v)! (n/2)v 

- (~r! (/~ 
m-k (k - rn),(n/2 + k), r2/ 

(rn-k) ! (n/2))k v 

- 

(-)k22k (i)! (n/2)k 2F1(k - m, n/2 + k; n/2; r2), 

where 2F1 (a, b; c; x) is the hypergeometric function. 
Now the identity (16) follows immediately from (19). Equality (17) is a conse- 

quence of the well-known Gaussian identity [3, p.104] 

2F1(a, b; c; 1) - F(c)r(c - a - b) 

which holds for c > a + b. In order to prove (18), we note that 2F1(a, b; c; x) is a 
solution of the differential equation 

x(1 -x)y" + (c- (a + b + l)x)y' -aby = 0. 

Hence, 

+ 2F1 (k - m, n/2 + k; n/2; r2) r=1 

- 2(k -in) (k/2 + k) 2F1(k - m,rn/2 + k;n/2; 1). 
in - 2k-I 

Thus, (18) follows from (19). The first statement in the theorem is proved. The 
second is a consequence of (12) and of Holder's inequality. D 
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Proof of Theorem 2. Let U(x) = Ix12-R2. Then for any R we have lB U2(x)dx > 0 
and fs(R) U2du = 0, which means that the highest possible PHOP of the cubature 
formulae of the form (5) is two. The uniqueness and the explicit form of the radius 
R(n) can be obtained immediately by comparing the integrals of U on B and on S. 
Then the comparison of the integrals of V(x) -1 on B and on S gives the weight 
c(n). We omit the calculations. We mention, however, that this yields 0 < R < 1. 

We shall establish the existence and uniqueness of QG simultaneously. In view 
of Corollary 2 this can be done if one proves that there exists a unique radial 
biharmonic monospline M(x) = M(r) on &{Q1, Q2}, Q1 = B(R),Q2 = B(1)-B(R) 
such that MfQ1 = M1, MIQ2 = M2 and 

(20) M2 (1) = dM. 2(1) = AM2(1) = d AM2(1) = 0, 
dr dr 

(21) M1(R)=M2(R) dM (R) dM (R), AM1 (R) = AM2(R). 

We need explicit representations of M1 and M2. It follows from (13) that 

4 4 

(22) M (r) 7dkY 8n(n + 2) k y ) 

where Yk, k -1, 2, 3, 4, are the linearly independent solutions of the homogeneous 
differential equation A2y = 0. Here, Ar is the radial part of A. It is well-known 
that 

n-i 
AryY = y + Y 

Therefore, 

d Ny Y//n-i1, n-i1 
d /\r = Y+ r Y r2 Y dr r ~' r2 

and 

A\2y = l(4) + n ? (n-1)(n-3) ,, (n-1)(n-3) 
r rI 

Obviously, for any n E N we have that Yi = 1 and Y2 = r2 are solutions of 
A\y = 0. The remaining two solutions are: for n = 2, y3 = log r and y4 = r2 log r, 
for n =4, y3 = logr and y4 = r-2, for n 7& 2,4, y3 = r2-n and y4 =r4.-n Recall 
that we require M to be C4(Qi),i = 1, 2. Since y3 and y4 are not C4 at r = 0, we 
set d13 = d14 = 0 in (22). 

On using (22), (13) and (14), the coefficients d2k in the representation of M2 can 
be uniquely determined from (20). Then we find d1j, d12 and R from (21). Finally, 
(9) yields 

c(n) = d ArMl (R)+-d ArM2(R). 

First we perform this procedure for n E N, n 7& 2,4. In this case, (20) reduces to 

d2l + d23 + d22 + d24 = -[8n(n +2)]-1, 

(2 - n)d23 + 2d22 + (4 - n)d24 = -[2n(n + 2)]1, 

2nd22 + 2(4 - n)d24 = [2n]-', 

2(2-n)(4-n)d24 = -1/n. 
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Solving this linear system, we obtain the explicit representation of M2. Taking 
into account that Ml(r) = r4/[8n(2 + n)] + d12r2 + di,, we conclude that (21) is 
equivalent to the system 

R2 R4-n R 2-n 

d12R2 ? d11 = 4n(2-n) 2n(2-n)(4-n) 2n(2-n)(2 + n) 
+1 

8(2-n)(4-n)' 

R_3-n Rl-n 

2n(2-n) 2n(2-n) 2n(2 + n)' 
1 ___R_-n 

2nd,2 = 
2(2-n) n(2-n) 

Subtracting the third equation from the second multiplied by n/R, we obtain R2 = 

n/(n + 2). Then the coefficients d12 and d11 are subsequently derived from the third 
and first equations. The equalities dZ\rM2(R) = R/n-R' -n/n and dZ\rM2(R) = 

R/n together with R = (n/(n + 2))1/2 yield 

c(n) = R1-n/n = ?R -n-i = 1 (n? 2) 
n n?+2Kn) 

The cases n = 2 and n = 4 are treated in the same way. We omit the details 
and write only the systems to which (20) and (21) are reduced. For n = 2 they are 

d2l+ d22 = -1/64, 

d23+ 2d22+ d24 = -1/16, 

4d22+ 4d24 = -1/4, 

4d24 = -1/2 

and 

d12R 2+ di, = 4 {4R2 - 5-4logR(1 + 2R2)}, 

2Rd12 = -- {1/R+4RlogR}, 
16 
1 

4d12 = --{1+2logR}. 
4 

For n = 4 the corresponding systems are 

d2l+ d24+ d22 = -1/192, 

-2d24 + 2d22 + d23 = -1/48, 
8d22+ 8d23 = -1/8, 

-4d23 = -1/4 

and 

d2R2 +di,= 1 {-6R2 +3+12 log R+2R2} 
192 

2Rd12 = - {3R-31/R + 1/R} 

8di2 = -82-R 

The theorem is proved. 
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Proof of Corollary 1. It must be proved that lB u(x)P2(x)dx = 0 for every function 
u which is harmonic on B. Note that (13) yields AP2 -2n and then D 2 = 0 

for IqI = 1. It is easily seen that D2P2-= 2 if D2 = a2/axt for some i, 1 < i < no 

and for the other values of q, Ijq = 2, DP2- 0. Hence, applying (15) for u and 
v = P2, we obtain 

n 
A2 (uP2) = 8 A ! (Dqu)(DqP2) = 8Z&2U/&X2 o. 

jqj=2 q* 

Hence, the product uP2 is biharmonic in B. Therefore, QG is precise for it and 

l u(x)P2(x)dx = c(n) J uP2da = QG(UP2). 
B S~~~~~~(R(n)) 

Since P2 vanishes for Jxj = R(n), we have QG(UP2) = 0. Thus fB 'aP2dx = 0. W 

Proof of Theorem 3. It follows from (12) that for every u E H2 we have 

RG(U) = l M(x)A22u(x) dx, 

where M is the radial biharmonic monospline defined in the first section and ob- 
tained in the proof of Theorem 2. On applying Holder's inequality, we obtain 

IRG(u)l ? I<MIlq IIA2uIIp 

If u E BHL, then IRG(u)I < IJIM1q. Hence, IRpG(u)l < IlMI1q. Let 1 < p < oo. 
Equality (6) will be proved if we find a function u e BH2 for which RG(u)I = 

IMIq. Every function u E H2 such that 

If~~~~-/ 

A2u(x) = (j M(x)lq dx) IM(x)q-1 signM(x) 

belongs to BHp and obviously IRG(u)l = 1jMjjq IIA2UIIp. 
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